

The potential viability of the device for cell detection and counting, avoiding cellular damage, is demonstrated. Pressure drop, shear stress, fluid viscosities and flow rates parameters were evaluated. In order to find optimal conditions for cell detection a COMSOL Multiphysics simulation was performed. Scanning Electron Microscopy (SEM), and profilometry techniques have been used for the micropore characterization. Micropores of varying size can be obtained by directly etching using an etchant agent concentration of 50 wt% KOH, at varying temperatures (40, 60, 80 ☌) and voltages (100, 500, 1000 mV). Optimal conditions of solid-state micropore fabrication from crystalline silicon wafers are presented. This paper presents a methodology for cell detection and counting using a device that combines PDMS (polydimethylsiloxane) microfluidic multilayer channels with a single solid state micropore.

Box 171-5-231B, Sangolquí, Ecuador f Instituto de Ingeniería Biomédica, Universidad de Buenos Aires (UBA), Buenos Aires, C1063ACV, Argentina g Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA E-mail: b MilliporeSigma Corporation, Hayward, CA 94545, USA c Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Cuidad Universitaria, Buenos Aires, 1428, Argentina d CONICET-Fluid Dynamics Laboratory, Facultad de ingeniería, Universidad de Buenos Aires (UBA), Buenos Aires, C1063ACV, Argentina e Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, P. Pérez* af and Betiana Lerner * ag a Facultad Regional Haedo, Universidad Tecnológica Nacional (UTN), Haedo, E 1706, Argentina.

RSC Adv., 2020, 10, 5361-5370 Hybrid microchannel-solid state micropore device for fast and optical cell detection †
